Akkus sind Stromspeicher, sie wandeln chemische in elektrische Energie um. Anders als klassische Batterien können Akkus das in zwei Richtungen: Sie können Elektrizität aufnehmen und später wieder abgeben.
Jeder Akkumulator besteht aus zwei Elektroden, die sich in einem Elektrolyt, das ist das leitende Medium, befinden. Der Elektrolyt muss nicht flüssig sein, er kann je nach Akku-Typ auch aus Gel oder ein Feststoff sein. Die beiden Elektroden (Anode und Kathode) werden durch eine poröse Wand, den Separator, voneinander getrennt. Durch die Trennung kommt es zu keinem Kurzschluss. Während sich die Elektronen an der Anode sammeln, sind sie auf der Kathode in Unterzahl. Diese Differenz beschreibt die elektrische Spannung.Wird ein Verbraucher zugeschaltet, wandern die überschüssigen Elektronen über Kabel von der Anode zur Kathode – es fließt Strom.
Der Stromspeicher von E-Autos besteht aus vielen einzelnen Modulen, die sich wiederum aus vielen einzelnen Zellen zusammensetzen. Die Batteriezelle ist die kleinste Einheit im Akkusystem. Moderne Systeme setzen auf sogenannte Pouch-Zellen, die von ihrer Bauart her Handy-Akkus ähneln. Beim VW ID.3 ergeben 24 solcher Zellen ein Akku-Modul. Bis zu zwölf Module ergeben am Ende ein Batterie-Paket im elektrischen VW. Aber auch mehr oder weniger Module sind möglich und bestimmen die Kapazität des Akkus.
E-Auto-Batterien arbeiten meist mit hohen Spannungen. Beim ID.3 liegen im System beispielsweise 408 Volt an, der Porsche Taycan arbeitet sogar mit 800 Volt, annähernd das 3,5-Fache der klassischen Haushaltsspannung von 230 Volt. Um bei diesen hohen Spannungen den Energiefluss zu steuern, bedarf es einer Leistungselektronik. Die dient neben dem Energiemanagement auch als Wechselrichter, der den im Akku gespeicherten Gleichstrom in Wechselstrom für den E-Motor umwandelt. Für die Bereitstellung des klassischen 12-Volt-Bordnetzes sorgt ein Gleichstrom-Wandler.
Die Leistungselektronik ist quasi das Gehirn des E-Antriebs. Mithilfe intelligenter Frequenz- und Amplitudensteuerung (Begrenzung der Spannung) regelt der Wechselrichter die Leistung der E-Maschine. Während die Frequenz des Wechselstroms die Geschwindigkeit des Autos bestimmt, ist die Amplitude am Ende für die Leistung verantwortlich. Die Leistungselektronik im E-Auto erzeugt also aus dem in der Batterie gespeicherten Gleichstrom genau den Wechselstrom, der für die aktuelle Fahrsituation benötigt wird.